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Abstract

The nonlinear aeroelastic characteristics of an aircraft wing with a control surface are investigated. A doublet-hybrid

method is used for the calculation of subsonic unsteady aerodynamic forces and the minimum-state approximation is

used for the approximation of aerodynamic forces. A free vibration analysis is performed using the finite element and

the fictitious mass methods. The structural nonlinearity in the control surface hinge is represented by both free-play and

a bilinear nonlinearity. These nonlinearities are linearized using the describing function method. From the nonlinear

flutter analysis, various types of limit cycle oscillations and periodic motions are observed in a wide range of air speeds

below the linear flutter boundary. The effects of structural nonlinearities on aeroelastic characteristics are investigated.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Flutter is a dynamic aeroelastic instability that involves aerodynamic, inertial, and elastic forces of a flight vehicle. If

flutter occurs in flight, the aircraft structure may fail. Therefore, it is important to predict the aeroelastic characteristics

accurately to prevent aeroelastic instabilities such as flutter.

During the past decades, most aeroelastic analyses of flight vehicles have been performed under the assumption of

structural linearity. Under this assumption, the aeroelastic characteristics can be easily obtained. However, the

aeroelastic results under the assumption of structural linearity may not agree with the physical phenomena because real

structures have structural nonlinearities such as free-play, bilinearity, asymmetry, and hysteresis.

Typically, nonlinear aeroelastic responses include flutter, divergence, limit cycle oscillation (LCO) and chaotic

motion. When a linear system becomes unstable, the amplitude of the response increases exponentially, whereas a

nonlinear system has bounded motion such as LCO or chaotic motion which occur above or below the linear flutter

speed. Although both LCO and chaotic motion do not cause the catastrophic failure of a structure, these motions can

cause a structure to be damaged by fatigue and can considerably effect the control systems of flight vehicles. Thus, the

effects of structural nonlinearities on the aeroelastic characteristics of flight vehicles should be investigated in the design

stage of a flight vehicle.

Nonlinear aeroelastic analyses of a wing with concentrated nonlinearities have been performed by several

investigators. Woolston et al. (1957) analyzed a relatively simple system including free-play, hysteresis, and cubic
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nonlinearity, and showed that LCO may occur below the linear flutter boundary. Laurenson and Trn (1980) studied

flutter of a missile control surface with structural nonlinearities using the Describing Function Method. Lee (1986)

developed an iterative scheme for multiple nonlinearities using the describing function method and the structural

dynamics modification method. Yang and Zhao (1988) studied the LCO of a typical section model with pitch

nonlinearity subject to incompressible flow using the Theodorsen function. Lee and Tron (1989) studied the flutter

characteristics of a CF-18 aircraft with structural nonlinearities in the leading-edge flap hinge and the wing-fold hinge

using the Describing Function Method. Hauenstein et al. (1990) and Zara et al. (1992) analytically and experimentally

studied the nonlinear aeroelastic response of a rigid wing with a structural nonlinearity. Lee and Kim (1995) studied

LCO and chaotic motion of a missile control surface with free-play nonlinearity using time-domain analysis.

Conner et al. (1997) and Tang et al. (1999) numerically and experimentally studied the nonlinear aeroelastic

characteristics of a typical section with control surface free-play in incompressible flow. This study showed that the

jumps of LCO amplitudes were observed. Virgin et al. (1999) studied the chaotic motion of a typical section and Tang

et al. (2000) studied the nonlinear responses of an airfoil excited by a gust load. Sheta et al. (2002) conducted

computational and experimental investigations of a nonlinear aeroelastic system with a fifth-order polynomial spring.

Recently, Bae et al. (2002) studied the nonlinear flutter characteristics of a wing with a control surface using

frequency- and time-domain analyses. It was shown that LCO and chaotic motion are observed in a wide range of air

speeds below the linear boundary and the coupling between flapping mode and other flexible modes are important in

the aeroelastic characteristics. Bae and Lee (2004) studied the LCO characteristics of a two-dimensional model and

showed that the LCOs can be observed above or below the linear flutter boundary dependent on the frequency ratio

between plunge and pitch modes. Bae et al. (2004) studied the nonlinear aeroelasticity of a deployable missile control fin
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Nomenclature

a stiffness ratio

A LCO amplitude

b reference length, half chord

½C� damping matrix

½GC� generalized damping matrix

½GK � generalized stiffness matrix

½GM� generalized mass matrix

ff g nonlinear term

fF ðsÞg Laplace transforms of ff g
½K � stiffness matrix

½Kn� nonlinear stiffness matrix

Ky flap hinge stiffness

½M� mass matrix

q dynamic pressure

½Q� aerodynamic influence coefficient matrix

s Laplace variable

fug displacement vector

fug modal displacement vector

U air speed

xa augmented state by aerodynamic approximation

X ðsÞ Laplace transforms of x

XaðsÞ Laplace transforms of xa

d free-play

y flap angle

r air density

½f� modal matrix

Subscripts

n nonlinear

y flap angle
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and showed that the aeroelastic characteristics can become more stable than in the case of linear aeroelasticity due to

the nonlinearity of a deployable hinge.

The purpose of the present study is to investigate the effects of structural nonlinearities in the control surface hinge on

the aeroelastic characteristics of an aircraft wing. The present study is a continuation of the previous work by Bae et al.

(2002). The authors intend to improve the previous aeroelastic analysis method and investigate the effects of nonlinear

type and an initial condition on the aeroelastic characteristics. In the present study, the finite element method (MSC,

1981) is used for the free vibration analysis and the modal approach using Fictitious Mass method (FM) (Karpel and

Newman, 1988) is used to reduce the problem size and the computation time. The Doublet-Hybrid Method (DHM)

(Ueda and Dowell 1982; Evesman and Pitt, 1991) is used for the computation of subsonic unsteady aerodynamic forces

and Minimum-State Approximation (MSA) of Karpel (1982) is used to approximate the unsteady aerodynamic forces.

Structural nonlinearity is linearized using the describing function method. The root-locus method and the time-

integration method are used for the nonlinear aeroelastic analysis. The nonlinear aeroelastic characteristics and

boundaries of an aircraft wing with free-play and bilinear nonlinearities are studied.

2. Theoretical analysis

2.1. Aeroelastic equation

The aeroelastic equation with a structural nonlinearity can be written as

½M�füg þ ½C�f ’ug þ ½KnðuÞ�fug ¼ fFðt; u; ’uÞg; ð1Þ

where ½M�; ½C�; ½Kn�; and fug are the mass matrix, damping matrix, stiffness matrix with structural nonlinearities,
aerodynamic force vector, and deflection vector, respectively. For a piecewise nonlinearity, the restoring force term,

½KnðuÞ�fug; can be written as follows:

½KnðuÞ�fug ¼ ½K �fug þ ff ðuÞg; ð2Þ

where ½K� is a linear stiffness matrix without structural nonlinearity, and ff ðuÞg is the restoring force vector whose
elements are zero except for the nonlinear contribution.

2.2. Fictitious mass method

In general, aeroelastic analyses are conducted in the generalized modal coordinates to save computational time and

memory. If structural nonlinearities are present in the structure, then the modal approach may not be used. This is

because the use of the constant modal coordinates of the nominal structure can give inaccurate results and may require

a relatively large number of modes in order to achieve a reasonable level of accuracy. To overcome this problem, the

FM method (Karpel and Newman, 1988) is used here. The idea of the FM method is that the local deformation due to

the large mass enables us to examine the structural variation. This method provides an efficient and easy way to apply

the computational scheme.

Ignoring the damping and aerodynamic force terms in Eq. (1), the free vibration equations of an n DOF system

loaded with fictitious mass is written

½M þ Mf �füg þ ½K �fug ¼ f0g: ð3Þ

The elements of the FM matrix ½Mf � are zero except for the degrees of freedom where structural variations, like

structural nonlinearities, occur. From the normal mode analysis of Eq. (3), we can obtain a set of n fictitious mass

modes ½f�; and then, the generalized mass and stiffness matrices are given as

½GMf � ¼ ½f�T½M þ Mf �½f�; ð4Þ

½GKf � ¼ ½f�T½K �½f� ¼ ½o2f �; ð5Þ

where ½o2f � is a diagonal matrix of the natural frequencies, including zero frequencies for rigid-body modes. Using the
FM modes ðfug ¼ ½f�fxgÞ; the free vibration equation of an actual structure with structural variation ½DK � can be
written as

ð½GMf � 	 ½f�T½Mf �½f�Þf.xg þ ð½GKf � þ ½f�T½DK �½f�Þfxg ¼ f0g: ð6Þ
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The mode shapes of the FM method are transformed to the basic structure and the new basic mode shapes serve as a

constant set of generalized coordinates throughout the aeroelastic analysis. The papers by Bae et al. (2002) and Karpel

and Newman (1988) can be referred to for more detailed descriptions for the FM method.

2.3. Unsteady aerodynamic influence coefficients

Using the modal matrix ½f� obtained from the FM model, the structural displacements can be transformed into

modal coordinates as follows:

fug ¼ ½f�f
%
ug; ð7Þ

where f
%
ug is the displacement in modal coordinates. Then, the generalized aerodynamic forces can be written as

f
%
Fg ¼ ½f�TfFg ¼ q½f�T½Q�½f�f

%
ug ¼ q½Q�f

%
ug; ð8Þ

where q ¼ 1
2
rU2 and ½Q� are the dynamic pressure and the generalized aerodynamic influence coefficient (AIC) matrix,

respectively. Generally, the generalized aerodynamic influence coefficients are calculated for tabled reduced frequencies

with an unsteady aerodynamic technique such as a panel method and computational fluid dynamic method. In the

present study, DHM code (Bae, 2002) is used for the computation of the subsonic unsteady AIC in Eq. (8). Panel

methods like DHM are to calculate the relation between the pressure difference at the doublet point and downwash at

the receiving point using a kernel function. The generalized AIC ½Q� is a function of Mach number and the reduced
frequency. Hence, if supersonic region is considered, a supersonic panel method like supersonic doublet-point method

must be used to calculate the AIC.

Using the transformation in Eq. (7), the aeroelastic equation in Eq. (1) can be transformed into the generalized

coordinates as follows:

½GM�füg þ ½GC�f ’ug þ ½GK �f
%
ug ¼ q½Q�f

%
ug 	 ½f�Tff ðuÞg; ð9Þ

where the generalized mass, damping, and stiffness matrix are written as

½GM� ¼ ½GMf � 	 ½f�T½Mf �½f�; ð10Þ

½GC� ¼ ½f�T½C�½f�; ð11Þ

½GK � ¼ ½GKf � þ ½f�T½DK �½f�: ð12Þ

2.4. State-space form of aeroelastic equation

To integrate the aeroelastic equations in Eq. (9), a transformation is applied to obtain state-space equations. The

generalized AIC matrix ½Q� in Eq. (8) should be approximated by a rational function because it is a function of the
tabulated reduced frequencies. There are many methods for rational function approximation (RFA). The present

analysis uses Karpel’s MSA (Karpel, 1982) method. The approximation form of Karpel’s method is as follows:

½
%
QðsÞ� ¼ ½P1�

b

U

� �2
s2 þ ½P2�

b

U

� �
s þ ½P3� þ ½D�ðs½I � 	 ½ %R�Þ	1½E�s; ð13Þ

where ½Pi�; ½D�; and ½E� are calculated from a least-squares fit and ½ %R� is a diagonal matrix. The diagonal terms of ½ %R� are
the aerodynamic poles and constants to be determined for the best fit of ½Q�:
Using Laplace transformation and MSA, Eq. (5) can be written as

ð½ %M�s2 þ ½ %C�s þ ½ %K�Þf
%
UðsÞg ¼ ½ %D�fXaðsÞg 	 ½f�TfF ðsÞg; ð14Þ

where

½ %M� ¼ ½GM� 	 1
2
rb2½P1�; ½ %C� ¼ ½GC� 	 1

2
rUb½P2�; ð15a; bÞ

½ %K� ¼ ½GK � 	 1
2
rU2½P3�; ½ %D� ¼ 1

2
rU2½D�: ð15c; dÞ

The state vector Xa sð Þ in Eq. (14) is obtained as

fXaðsÞg ¼ ðs½I � 	 ½ %R�Þ	1½E�sfX ðsÞg: ð16Þ
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Defining the new state v as ’u; the final state-space aeroelastic equations are obtained as

’v

’u
%
’xa

8><
>:

9>=
>; ¼

	½ %M�	1½ %C� 	½ %M�	1½ %K� 	½ %M�	1½ %D�

½I � ½0� ½0�

½E� ½0� ½ %R�

2
64

3
75

v

%
u

xa

8><
>:

9>=
>;þ

	½ %M�	1½f�Tff g

0

0

8><
>:

9>=
>;: ð17Þ

2.5. Root-locus method and time simulation

Generally, there are two kinds of aeroelastic analysis methods, frequency-domain method and time-domain method.

Frequency-domain method includes conventional V2g method, p2k method (MacNeal-Schwendler Corp, 1981), and

root-locus method, and time-domain method requires the time-integration of Eq. (18). Although the approaches of

these methods are different, they provide similar aeroelastic solutions for linear aeroelastic problems.

The advantages of frequency-domain analysis are that it requires relatively less computation time, allows for a simple

analysis procedure, and provides results that are easily interpreted. The drawback to this method is that it cannot be

directly applied to nonlinear aeroelastic problem. For a harmonic motion like LCO, a nonlinear spring can be linearized

with describing function method. Unlike the frequency-domain method, time-domain method can be applied to

nonlinear aeroelastic problems. However, the time-domain method requires complex analysis procedures and large

computation times, and may produce results that are difficult to interpret. Therefore, both methods are necessary for

efficient nonlinear aeroelastic analysis. The present aeroelastic analysis procedure is (i) to perform the frequency-

domain analysis using an equivalent spring and to establish LCO boundary (ii) to simulate aeroelastic responses based

on the results of frequency-domain analysis.

In the present study, the root-locus method and time integration method are used for nonlinear aeroelastic analysis.

The root-locus method involves tracing the root-loci of Eq. (18). As the air speed U increases, a real part of eigenvalue

of Eq. (18) is changed from negative to positive. This point is the flutter point, and the speed U is the flutter speed Uf :
To integrate Eq. (18), the Runge–Kutta method is used here.

2.6. Linearization of nonlinear hinge spring

Fig. 1 shows a fighter wing with a control surface like flaperon. A servoactuator is connected at the root of a control

surface as shown in Fig. 1. Due to manufacturing tolerances or loosened mechanical linkages, the connection between a

control surface and a servoactuator may have some nonlinearities. For analysis purpose, the nonlinearities can be

represented by a nonlinear hinge spring.
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The elements of ff g in Eq. (18) are zero except for the element representing force exerted by the nonlinear hinge
spring of a control surface. This element can be represented by free-play or bilinear nonlinearity. Fig. 2 shows a bilinear

spring. The bilinear spring can be expressed as

f ðyÞ ¼

Ky½y	 ð1	 aÞd�; y > d;

aKyy; 	doyod;

Ky½yþ ð1	 aÞd�; yo	 d;

8><
>: ð18Þ

where y and d are a flap rotation angle and free-play, respectively. When the stiffness ratio a is zero, Eq. (11) represents

a nonlinear spring with free-play.

For frequency-domain analysis, we need to obtain the equivalent spring from the bilinear spring in Eq. (19). The

main idea of the describing function method is to calculate the equivalent spring under the assumption of a harmonic

motion. If the motion of the flap angle y is harmonic, we can write this as

y ¼ A sinot; ð19Þ

where A and o are the amplitude and frequency of harmonic motion, respectively. Considering only the fundamental

component, the restoring force can be written as

f ðyÞ ¼ Keqy; ð20Þ

Keq ¼
aKy; 0pAod;
Ky

p
p	 2ð1	 aÞsin	1

d
A
	 ð1	 aÞsin 2 sin	1

d
A

� �� �
; AXd:

8<
: ð21Þ

Fig. 3 shows the relationship between the LCO amplitude of an aeroelastic responses and the equivalent stiffness. As

shown in Fig. 3, the equivalent stiffness of a nonlinear spring decreases considerably compared with that of a linear

spring and the equivalent stiffness increases as the LCO amplitude increases. The equivalent stiffness of a bilinear spring

is larger than that of free-play and the aeroelastic characteristics of a bilinear spring are predicted to be better than

those of free-play.

3. Numerical example and discussion

As a numerical example, the aircraft wing with a control surface shown in Fig. 1 is used. The material is aluminum.

The material properties of the aluminum used are E ¼ 72 GPa; ral ¼ 2800 kg=m3; and v ¼ 0:33: The thickness of the
wing is 6mm.

3.1. Free vibration analysis

Table 1 shows the natural frequencies of the aircraft wing with a control surface using both the direct method and the

FM method. The hinge stiffness used in the free vibration analysis is 400Nm/rad. With the direct method, the aircraft

wing is directly modelled with a control surface hinge spring, whereas with the FM method, it is modelled with an FM
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and without a hinge spring in the finite element analysis. After the finite element analysis, the FM model is established

by adding a hinge spring. Although a hinge spring has structural variations, it is sufficient to change the stiffness of the

hinge only. For the hinge stiffness of 400Nm/rad, the lowest four natural frequencies of the direct method and FM

method agree well except for the highest mode. This disagreement is due to the local distortion in the highest mode

caused by an added FM. In general, the lowest two modes (bending and torsion modes) are important for a wing

without a control surface and the lowest four modes are important for a wing with a control surface. Hence, the lowest

eight modes are used in the proceeding aeroelastic analysis. Fig. 4 shows the natural frequency variations and the mode

shapes of the lowest four modes for a change in hinge stiffness. Independent of hinge stiffness, the FM method provides

accurate results. There are two points where noticeable mode shapes changes are observed. One is approximately

20Nm/rad and the other is approximately 300Nm/rad. The variation of the flapping mode is very large. Its effect

moves from the first mode to second mode and from second mode to the third mode. As the hinge stiffness increases,

the frequencies and the mode shapes of the lowest four modes vary significantly but the higher modes have little

variation.

3.2. Aeroelastic analysis (linear case)

Table 2 shows a comparison of flutter speed and frequency using the V2g method (Bae, 2002), the root-locus

method, and the time-integration method. In these cases, the Mach number is 0.7 and the air density is 1.23 kg/m3. The
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Table 1

Comparison of natural frequencies (Ky=400Nm/rad)

Mode no. Direct method Fictitious mass method

4 6 8 10 12

1 15.61 15.61 15.61 15.61 15.61 15.61

2 52.79 53.58 52.80 52.80 52.79 52.79

3 64.33 65.66 64.34 64.33 64.33 64.33

4 86.38 113.39 86.41 86.39 86.38 86.38

5 164.5 164.5 164.5 164.5 164.5

6 212.3 558.2 212.4 212.3 212.3

7 266.4 268.6 266.6 266.5

8 306.9 772.2 307.0 307.0

9 319.3 319.5 319.4

10 425.3 1304.0 425.3

11 436.8 437.1

12 514.3 1565.9
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flutter results for Ky ¼ 1000 Nm=rad are in good agreement with those of Reference (MacNeal-Schwendler Corp,
1981). Fig. 5 shows the flutter speeds and frequencies for various hinge stiffness values. This figure provides us the

important information of both linear and nonlinear aeroelastic characteristics. As shown in Fig. 5, the aeroelastic

characteristics of an aircraft wing with a control surface significantly vary and jumps in the flutter speed and frequency

are observed. These jumps are due to the change in the flutter mode. The hinge stiffness values at which these jumps
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Fig. 4. Natural frequencies versus hinge stiffness.

Table 2

Comparison of flutter speeds and frequencies (M=0.7, Ky=1000Nm/rad)

Flutter speed (m/s) Flutter frequency (Hz)

NASTRAN 201.1 80.6

V-g(Direct) 196.9 79.7

V-g(FM) 197.1 79.6

Root-locus(FM) 196.9 79.6

Time(FM) 197.0 79.7
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occur are almost the same as those for the mode shape changes in Fig. 4. And also, there is not a flutter solution in the

airspeed region from 75 to 125m/s and from 175 to 185m/s.

The flutter characteristics in Fig. 5 can be subdivided into four regions. The first is the bending–flapping mode

coalescent flutter and the second is the hump mode flutter of the third mode (torsion–flapping mode). The third is the

third-fourth mode (first torsion–second bending mode) coalescent flutter and the last is the first-second mode (first

bending–first torsion) coalescent flutter. Fig. 3 shows that the hinge stiffness decreases due to the existence of structural

nonlinearities such as free-play and bilinearity. Therefore, we can predict that the nonlinear flutter boundary is lower

than that of the linear case. For more than approximately 3000Nm/rad, the flutter characteristics are similar to that of

a clean wing. The hinge stiffness used in the following nonlinear aeroelastic analysis is 3000Nm/rad and free-play angle

is 0.125
.

3.3. Aeroelastic analysis (free-play case, a = 0.0)

Fig. 6 shows the LCO amplitudes of an aircraft wing with free-play nonlinearity observed in the nonlinear aeroelastic

analysis. Fig. 7 shows the parameter map of the aircraft wing with free-play nonlinearity. The parameter map shows the

aeroelastic responses for various air speeds and initial conditions. The first mode of the numerical model is a rigid body

mode of a flap. Thus, to change the initial condition, the displacement of the first mode is excited in the present study.

The type of LCO is dependent on the energy level of the system. Changing the initial condition changes the energy level

of the system. Three types of stable LCO and unstable LCO are observed for air speeds below the linear flutter

boundary. Stable LCOs can be subdivided into LCO 1, LCO 2, and LCO 3 dependent on the LCO mode shape. The

LCO flutter modes of LCO 1, LCO 2, and LCO 3 are the bending–flapping mode, the torsion–flapping mode (hump

mode), and the first torsion–second bending mode, respectively.

LCO 3, with a large LCO amplitude, can be predicted in the frequency-domain analysis whereas LCO 1 and LCO 2

cannot be observed. At low air speeds, it is observed that LCO 1 is independent of the initial condition and the

amplitudes are nearly constant. For air speeds between approximately 125 and 200m/s, different types of LCO are

observed in the same air speed dependent on an initial condition. For air speeds between approximately 175 and 200m/

s, periodic motions can be observed. Periodic motion is defined as the oscillation including several harmonics. For air

speeds between approximately 200 and 250 m/s, LCO 3 and unstable LCO can be observed. The types of aeroelastic

responses can be dependent on the initial condition. Unstable LCO can cause the instability of the aeroelastic system

whereas stable LCO does not. The aeroelastic responses in Fig. 6 do not become unstable due to the initial condition

because the amplitude of stable LCO is larger than that of unstable LCO.

Figs. 8–13 show the time history and phase plot for the wing tip and flap. Figs. 8 and 9 show that two different types

of LCO occur when the air speed is 160m/s. One is LCO 1 with low frequency (20.0Hz) and the other is LCO 2 with

high frequency (60.9Hz). Due to the difference of the flutter mode, the tip amplitude of LCO 1 is larger than that of

LCO 2 whereas the flap amplitudes of LCO 1 and LCO 2 are almost the same. These LCO types are dependent on an

initial flap amplitude. Figs. 10 and 11 show two different types of aeroelastic responses dependent on the initial

amplitude when the air speed is 180m/s. In this air speed, two types of LCOs are observed. When the initial flap angle

ratio ðy0=dÞ is 1.5, periodic motion with several frequencies including 9, 20, and 60Hz is observed. When the initial flap
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Fig. 7. Parameter map of aircraft wing with free-play nonlinearity.
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angle ratio is more than 2.0, LCO 2 is observed and is similar to that in Fig. 9. Figs. 12 and 13 show the aeroelastic

responses when the air speed is 210m/s. Fig. 12 shows that an unstable LCO with several frequencies disappears and

then LCO 3 with large amplitude remains when the initial amplitude ratio is 1.6. Due to the existence of LCO 3, the

aeroelastic system remains stable independent of the initial condition. Fig. 13 shows that LCO 3 is observed when the

initial amplitude ratio is 2.4. The flutter frequency of LCO 3 is 80.9Hz and the flutter mode is the first torsion–second

bending mode. The amplitude of LCO 3 increases as the air speed increases. Aeroelastic responses over the linear flutter

boundary are unstable independent of the initial condition.

3.4. Aeroelastic analysis (bilinear case, a = 0.1)

In the previous section, various kinds of LCOs due to free-play were observed in a wide range of air speeds. In this

section, the effects of the stiffness aKy on the free-play LCO characteristics will be investigated. Fig. 14 shows the LCO
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amplitudes of an aircraft wing with bilinear nonlinearity. As shown in Fig. 3, the equivalent stiffness of a bilinear spring

is larger than that of free-play nonlinearity because the stiffness ratio a is not zero. The hinge stiffness in free-play is

300Nm/rad. Fig. 15 shows the parameter map of an aircraft wing with bilinear nonlinearity. Two types of LCO and

unstable LCO are observed for air speeds below the linear flutter boundary. LCO 1 is not observed because the

equivalent stiffness of a bilinear spring is larger than 300Nm/rad. As shown in Fig. 5, the bending–flapping mode

flutter similar to LCO 1 occurs when the equivalent stiffness is less than 30Nm/rad. For free-play nonlinearity, LCO 1

can be observed when the equivalent stiffness is very small. For air speeds between approximately 125 and 175m/s,

LCO 2 (about 60Hz) with a small amplitude is observed independent of the initial amplitude. This LCO is the same as

the LCO 2 of the free-play case.
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Figs. 16–19 show the time history and phase plot. Fig. 16 shows the aeroelastic response when the air speed is 160m/

s. For air speeds between approximately 175 and 185m/s, no type of LCO is observed. Fig. 17 shows the aeroelastic

responses when the air speed is 180 m/s. Although the damping is small, the oscillation damps out. When the air speed is

larger than about 185m/s, LCO 3 and unstable LCO are observed dependent on the initial amplitude. Fig. 18 shows

that unstable LCO with small amplitude disappears while the LCO 3 remains when the air speed is 200m/s and the

initial amplitude ratio is 1.21. When the initial amplitude ratio is less than this value, unstable LCO disappears and

LCO 3 does not occur. Fig. 19 shows the aeroelastic response when the air speed is 230m/s. LCO 3 with large amplitude

is observed independent of the initial amplitude. Periodic motion shown in Fig. 10 is not observed for the bilinear case.

In Figs. 6 and 20, there are two interesting regions. One is the region of ‘‘LCO and periodic motion (Region 1)’’ in

Fig. 6 and the other is the region of ‘‘No LCO region (Region 2)’’ in Fig. 14. It appears that these two regions are

related to the change in the LCO flutter mode type. In Fig. 5, there are two minimum flutter speed points in Ky ¼
20 Nm=rad and Ky ¼ 300 Nm=rad: The flutter speed and frequency of Ky ¼ 20 Nm=rad are approximately 30m/s and
20Hz, respectively. Those of Ky ¼ 300 Nm=rad are approximately 125m/s and 60Hz. These frequencies are similar to
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Fig. 15. Parameter map of aircraft wing with bilinear nonlinearity ða ¼ 0:1Þ:
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those of stable LCO 1 and LCO 2. The lowest three frequencies of Fig. 10 are approximately 9, 21, and 52Hz,

respectively. Hence, there are three types of stable LCOs in Region 1 whereas unstable LCOs disappear. The

characteristics of the Region 2 are similar to those of Region 1 but the LCO and periodic motion are not observed.

Fig. 20 shows the LCO amplitudes of an aircraft wing with free-play and bilinear nonlinearities. The LCO boundary

of free-play nonlinearity is lower than that of bilinear nonlinearity. When the stiffness ratio a is 0.1, LCO 1 and periodic

motion are not observed. When the stiffness ratio a is 0.2, LCO 1, LCO 2, and an unstable LCO are not observed. Thus,

periodic motions in the present study are mainly caused by free-play. Also, the LCO amplitude of the bilinear case is

smaller than that of the free-play case. Therefore, the aeroelastic characteristics of an aircraft wing with a control

surface become better as the stiffness within free-play increases.
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4. Conclusions

In the present study, the nonlinear aeroelastic analysis of an aircraft wing with a control surface is performed. The

finite element method is used for the free vibration analysis of an aircraft wing. A modal approach using the fictitious

mass method is used to save computation time and memory. The doublet-hybrid method is used for the calculation of

subsonic unsteady aerodynamic forces and the minimum-state approximation is used for the approximation of

unsteady aerodynamic forces. The structural nonlinearity in the control surface hinge is assumed by free-play and

bilinear nonlinearities and is linearized using the describing function. The nonlinear aeroelastic analysis is conducted in

the frequency- and time-domain.

From free vibration analysis the vibration characteristics of an aircraft wing with a control surface vary considerably

with hinge stiffness. For the free-play case, three types of LCO, unstable LCO, and periodic motion are observed

dependent on the initial conditions for air speeds below the linear flutter boundary. These various aeroelastic responses

are due to the change of flutter mode. Although the flap hinge stiffness is so large, the nonlinear aeroelastic responses

like LCO are observed due to free-play. For the bilinear case, two different types of LCO and unstable LCO are

observed for air speeds below the linear flutter boundary. Periodic motion is not observed and there exists an air speed
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region where LCO is not observed. The nonlinear aeroelastic characteristics of an aircraft wing with a control surface

become better as the stiffness within free-play increases.
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